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1. Introduction 
1.1. Science/Applications Rationale for the Product 

Investigating a range of ecological responses to changes in climate, chemical 

composition of the atmosphere and terrestrial plant communities across the globe is 

crucial to understanding the current state of the Earth’s systems and to diagnosing the 

magnitude and direction of their changes. Large-scale modeling has drawn the 

attention of a broad range of scientific communities as it can provide an effective 

means to simulating the interactions between the biosphere, atmosphere, hydrosphere 

etc. and the causal relations for observed phenomena (Taylor et al., 2012). Green 

leaves are the primary interface for the exchange of fluxes of energy, mass (e.g., water, 

nutrient and CO2) and momentum between the terrestrial surface and the planetary 

boundary layer (Richardson et al., 2012). Thus most ecosystem and climate models 

introduce the area of leaves as a key state parameter describing the interactions 

between the biosphere and atmosphere. The most common measure of the area of 

leaves is the leaf area index (LAI), which is generally defined as one half of the total 

leaf surface area divided by the ground area (Chen and Black, 1992).  

 

Another key parameter that characterizes the energy absorption capacity of 

vegetation is the fraction of photosynthetically active radiation (0.4–0.7 µm, FPAR) 

absorbed by the vegetation canopy. FPAR depends on the incident radiation field, 

architecture and absorption, reflectance and transmission spectra of the canopy as well 

as the reflectance of the soil and/or understory background. It is one of the 

fundamental parameters used to estimate net primary production and for modeling of 

terrestrial carbon processes (Sellers et al., 1986; Knorr and Kattge, 2005). Similar to 

LAI, FPAR has also been identified as one of the fundamental terrestrial state 

variables in global models of climate, hydrology, biogeochemistry and ecology 

(Sellers et al., 1997). Therefore these variables that describe vegetation canopy 

structure and its energy absorption capacity are required by many of the Earth 

Observing System (EOS) Interdisciplinary Projects (Myneni et al., 1997). Indeed, 

LAI/FPAR data has been acknowledged as a key Earth Science Data Record (ESDR) 

by the NASA Earth Science Division (Bontempi, 2015), and an Essential Climate 

Variable (ECV) by the Global Climate Observing System (GCOS) (GCOS, 2006). 
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The problem of accurately evaluating the exchange of carbon between the 

atmosphere and the terrestrial vegetation requires special attention. In order to 

quantitatively and accurately model global dynamics of these processes, differentiate 

short-term from long-term trends, as well as to distinguish regional from global 

phenomena, these two parameters, LAI and FPAR, must be collected often for a long 

period of time and should represent every region of the Earth’s lands. Satellite remote 

sensing can serve as the most effective means for collecting global data on a regularly 

basis. Thus, efforts from the scientific community on developing global LAI/FPAR 

data using satellite observation have been made in last few decades (Knyazikhin et al., 

1998a; Myneni et al., 2002; Zhu et al., 2013; Baret et al., 2013).  

 

In particular, the ground-breaking Earth Observing System (EOS) Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra and Aqua 

satellites provided an opportunity for opening a new horizon of global LAI/FPAR 

products (Figure 1-1) (Myneni et al., 2002). A well-matured latest version (Collection 

6) of global LAI/FPAR data set (since February 2000) from this sensor is freely 

available and much in use by the wide scientific, public and private user communities 

(Yan et al., 2016a; Yan et al., 2016b). As Terra and Aqua MODIS sensors will likely 

be terminated (Terra and Aqua MODIS have far exceeded their design life, 6 years, 

and have a strong chance of operating successfully into the early 2020s.), the 

Visible/Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi 

National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite System (JPSS) 

has inherited the scientific roles of MODIS (Justice et al., 2013). The first VIIRS 

sensor onboard the SNPP platform was successfully launched in October 2011. 

Therefore, developing consistent LAI/FPAR data sets from these new sensors to 

continue the MODIS record is a high priority. This document primarily aims to 

describe the theoretical basis of proposed and developed global VIIRS LAI/FPAR 

product algorithm. Furthermore, as the ultimate goal lies in continuing global 

LAI/FPAR ESDR production as a successor to EOS MODIS, explicit consistency 

evaluation between VIIRS and MODIS is documented herein.  
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(A) 

 
(B) 

Figure 1-1. Global color-coded maps of Terra MODIS Collection 6 LAI (upper panel, A) and FPAR 
(lower panel, B). These maps were generated from nearly 16 years of Terra MODIS data (Only 
August datasets were used to calculate long-term climatology. Leaf area index (LAI) is defined as 
the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the total 
needle surface area per unit ground area in coniferous canopies. FPAR is defined as the fraction of 
incident photosynthetically active radiation (400–700 nm) absorbed by the green elements of a 
vegetation canopy. Both quantities are dimensionless. 
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1.2. Intended User Community 

Remotely sensed global vegetation canopy LAI/FPAR products have been 

widely used by following user communities - (a) Scientific: modelers of climate, 

biogeochemistry, ecology, hydrology, crop production, etc.; (b) Public: meteorological 

organizations, deforestation, drought and desertification monitoring organizations, 

rapid response systems, pest risk evaluation companies, NGOs (Non-Governmental 

Organization) and governments (for the implementation and potential verification of 

compliance of international treaties); and (c) Private: international agriculture, forestry 

& insurance companies, traders, etc.	
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2. Algorithm  

2.1. Technical Background and Heritage 

Several different algorithmic approaches for estimating LAI/FPAR using 

remotely sensed surface reflectance measurements have been developed and widely 

used. The approaches can be conceptually categorized as: (a) Empirical approaches 

that are based on relationships between vegetation indices and (b) Physical approaches 

that are based on the physics of radiation interaction with elements of a canopy and 

transport within the vegetative medium. 

 

For the empirical approaches, the Normalized Difference Vegetation Index 

(NDVI) is one of the most widely used vegetation index to infer LAI or FPAR (e.g., 

Asrar et al., 1984). These relationships are generally sensitive to soil background, leaf 

optical properties, the orientation and spatial distribution of leaves in a canopy and the 

general architecture of vegetation stands within the spatial scale of measurements 

(Myneni et al., 1997). However, the empirical approaches tend to be site-, time-, and 

species-specific, and are therefore not well suited for large-scale operational use 

(Houborg et al., 2007). 

 

Physical model based approaches provide a linkage between biophysical 

variables and vegetation canopy reflectances at different wavelengths (Knyazikhin et 

al., 1998a). These methods can be categorized into four broad groups: (1) radiative 

transfer models (Knyazikhin et al., 1998a), (2) geometric-optical models (Li and 

Strahler, 1992), (3) hybrid models that incorporate both radiative transfer as well as 

geometric-optics (Li et al., 1995), and (4) computer simulation models (e.g., Monte-

Carlo simulation) (Ross and Marshak, 1988). The methods involve iterative techniques 

and are thus computationally intensive for operational use. But, methods to alleviate 

this have also been developed, e.g., use of Look Up Tables (LUT) (Knyazikhin et al., 

1999).  

 

The VIIRS LAI/FPAR algorithm is based on a long heritage of legacy 

operational algorithms and theoretical research foundation. Two key heritages are (a) a 

well- matured 17-year long MODIS LAI/FPAR operational algorithm which is based 

on 3D-radiative transfer model and LUT, and (b) a physically proven algorithm for 

achieving inter-sensor consistency. Details can be found in the rest of Section 2.  
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2.2. Overview of the Algorithm  

The VIIRS LAI/FPAR algorithm has benefitted from the heritage of the MODIS 

operational algorithm. The algorithm retrieves LAI and FPAR values given sun and 

view directions, Bidirectional Reflectance Factor (BRF) for each spectral band, 

uncertainties (i.e., relative stabilized precision, Wang et al., 2001) in input BRFs, and 

land cover classes based on a 8-biome classification map (Myneni et al., 2002; Yang et 

al., 2006). The operational VIIRS LAI/FPAR algorithm consists of a main algorithm 

that is based on 3D RT equation. By describing the photon transfer process, this 

algorithm links surface spectral BRFs to both structural and spectral parameters of the 

vegetation canopy and soil (Myneni and Ross, 1991; Ross, 2012). Given atmosphere-

corrected BRFs and their uncertainties, the algorithm finds candidates of LAI and 

FPAR by comparing observed and modeled BRFs that are stored in biome type 

specific LUTs. All canopy/soil patterns for which observed and modeled BRFs differ 

within biome-specified thresholds of uncertainties (e.g., 30% and 15% for red and 

near-infrared bands, respectively, for forest biomes) are considered candidate solutions 

and the mean values of LAI and FPAR from these solutions are reported as outputs 

(Figure 2-1). The mean and dispersion of LAI/FPAR candidates are reported as 

retrieval and its reliability, respectively. The law of energy conservation and the 

theory of spectral invariance are two important features of this main algorithm 

(Knyazikhin et al.,1999).  

 
(A) 

 
(B) 

Figure 2-1. Schematic illustration of the main algorithm. (A) Distribution of vegetated pixels with 
respect to their reflectances at red and near-infrared (NIR) spectral bands. A point on the red-NIR 
plane and an area about it (yellow ellipse defined by a 𝜒! distribution) are treated as the measured 
BRF at a given sun-sensor geometry and its uncertainty. Each combination of canopy/soil 
parameters and corresponding FPAR values for which modeled reflectances belong to the ellipse is 
an acceptable solution. (B) Density distribution function of acceptable solutions. Shown is solution 
density distribution function of LAI for five different pixels. The mean LAI and its dispersion (STD 
LAI) are taken as the LAI retrieval and its uncertainty. The figures are quoted from Knyazikhin et al. 
(1999). 
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The main algorithm may fail to localize a solution if uncertainties of input BRFs 

are larger than threshold values or due to deficiencies of the RT model that result in 

incorrect simulated BRFs. In such cases, a backup empirical method based on relations 

between NDVI and LAI/FPAR (Myneni et al., 1994; Knyazikhin et al., 1998a) is 

utilized to output LAI/FPAR with relatively poor quality—this is called the backup 

algorithm. Figure 2-2 demonstrates the distributions of the retrieved LAI and FPAR 

values with respect to the NDVI in the case of savanna biome showing the foundation 

of the backup algorithm using the latest version of VIIRS surface reflectance and 

LAI/FPAR algorithm. Panel C in Figure 2-2 show scatter plots of input reflectance 

data from successful and unsuccessful retrievals in the red and near-infrared space. 

This distribution provides insight on where and why the algorithm failed.  

 

 
(A) 

 
(B) 

 
(C) 

 
 
 
 
 
 
 
Figure 2-2. For Savanna (Biome 4) as an 
example, the scatter plot shows (A) the LAI–
NDVI relationship, (B) NDVI–FPAR 
relationship, (C) retrieved (main) and non-
retrieved (backup) pixels in RED-NIR space. 
VIIRS V1 BRFs and retrieved LAI/FPAR were 
used to demonstrate the relationships. VIIRS 
specific parametric optimization is applied to 
obtain the data shown here. 
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The algorithm currently requires: (a) atmospherically corrected surface 

reflectances at Red and NIR bands, and (b) an 8-biome Land Cover (LC) classification 

map distinguishing the following biomes types: (1) grasses and cereal crops, (2) shrubs, 

(3) broadleaf crops, (4) savannas, (5) evergreen broadleaf forests, (6) deciduous 

broadleaf forests, (7) evergreen needle leaf forests, (8) deciduous needle leaf forests 

(Figure 2-3). These biomes span structural variations along the horizontal and vertical 

dimensions, canopy height, leaf type, soil brightness and climate space of herbaceous 

and woody vegetation globally (Table 2-1). The biome map reduces the number of 

unknowns of the inverse problem through the use of simplifying assumptions (e.g., 

biome specific models of leaf orientation distributions; Knyazikhin et al., 1998a) and 

standard constants (e.g., biome-specific leaf and soil optical properties at given 

wavelengths).  

 

 
Figure 2-3. Global biome map input for VIIRS LAI/FPAR production. Global vegetation is 
stratified into eight canopy architectural types, or biomes. The eight biomes are (1) grasses and 
cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5) evergreen broadleaf forests, (6) 
deciduous broadleaf forests, (7) evergreen needle leaf forests, (8) deciduous needle leaf forests. 
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Table 2-1. Canopy structural attributes of global land covers from the viewpoint of radiative transfer 
modeling.  

 

2.3. Radiation Transport in a Canopy  

The solution of the RT equation for a vegetation medium is constructed from the 

solution of two sub-problems to which the notion of spectral invariance can be directly 

applied: (1) the black soil (BS) problem: the original illumination condition at the top 

of the canopy and the soil assumed to be absolutely absorbing; and (2) the soil (S) 

problem: there is no input energy from above, but a lambertian energy source is 

located at the bottom of the canopy. This decomposition technique is implemented in 

the LAI/FPAR operational algorithm. According to this approach, the spectral BRDF 

rλ (Ω) is approximated as below under given sun (Ω0 ) and view (Ω ) directions. 

 

rλ (Ω,Ω0 ) = wBS,λ ⋅ rBS,λ (Ω0 )

+wS,λ ⋅ tS,λ ⋅
ρeff (λ)

1− ρeff (λ) ⋅ rS,λ
⋅ tBS,λ (Ω0 )

  (Equation 2-1) 

 B1 B2 B3 B4 B5 B6 B7 B8 

Horizontal 
heterogeneity no yes variable yes yes yes yes yes 

Ground cover 100% 20-
60% 

10-
100% 20-40% > 70% > 70% > 70% > 70% 

Vertical 
heterogeneity 
(leaf optics 
and LAD*) 

no no no yes yes yes yes yes 

Understory no no no grasses yes yes yes yes 

Foliage 
dispersion 

minimal 
clumping random regular minimal 

clumping clumped clumped severe 
clumping 

severe 
clumping 

Crown 
shadowing no not 

mutual no no yes 
mutual 

yes 
mutual 

yes 
mutual 

yes 
mutual 

Brightness of 
canopy ground medium bright dark medium dark dark dark dark 

*: Leaf Area Density 
B1: Grasses and Cereal Crops, B2: Shrubs, B3: Broadleaf crops, B4: Savanna, B5: Evergreen Broadleaf forest, 
B6: Deciduous Broadleaf forest, B7: Evergreen Needleleaf forest, B8: Deciduous Needleleaf forest. 
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Here rBS,λ (Ω0 ) 	and tBS,λ (Ω0 )  are directional hemispherical reflectance (DHR) and 

canopy transmittance for the black soil, and rS,λ 	and tS,λ 	are reflectance and 

transmittance resulting from an anisotropic source located underneath the canopy. The 

weight wBS,λ  is the ratio of the BRDF for the black soil problem to rBS,λ (Ω0 ) , and wS,λ  

is the ratio of the canopy leaving radiance generated by anisotropic sources on the 

canopy bottom to tS,λ . The weights wBS,λ  and wS,λ  are functions of sun-view geometry, 

wavelength, and LAI. Note that wBS,λ  and wS,λ  are nearly wavelength independent. 

They are precomputed and stored in the LUT (Knyazikhin et al., 1999). The effective 

ground reflectance ρeff  is the fraction of radiation reflected by the canopy ground. It 

depends on the radiative regime at the canopy bottom. However, its range of variations 

does not exceed the range of variations of the hemispherically integrated bidirectional 

factor of the ground surface, which is independent of vegetation (Knyazikhin et al., 

1998a). Therefore, ρeff  can be used as a parameter to characterize the ground 

reflection. The set of various patterns of effective ground reflectances at the spectral 

bands of given sensor is a static table of the algorithm, i.e., the element of the LUT. 

The present version of the LUT contains 29 patterns of ρeff 	ranging from bright to dark. 

They were taken from the soil reflectance model developed by Jacquemoud et al. 

(1992), with model inputs presented in Baret et al. (1993). While calculation of ground 

reflectances based on simplifying assumptions may be a weak point, the alternative, 

utilizing understory spectral databases (e.g. Kuusk et al., 2004; Peltoniemi et al., 2005) 

to characterize the background contribution for LAI retrievals for continental or global 

extents would be a significantly more demanding task as (a) there can be large 

variations in understory reflectances even within the same biome type, (b) variability 

of background reflectances is present at specific wavelengths across different regions, 

and (c) seasonal variations of background composition and their optical properties 

would comprise an added challenge.   

 

Note that rBS,λ (Ω0 ) 	and rS,λ  are not included in the LUT. Given canopy 

absorptance ( aBS,λ (Ω0 )  and aS,λ ) and transmittance ( tBS,λ (Ω0 ) 	and tS,λ ), they are 

evaluated via the law of energy conservation as 
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rBS,λ + tBS,λ + aBS,λ =1   (Equation 2-2) 

rS,λ + tS,λ + aS,λ =1   (Equation 2-3) 

 

This makes canopy reflectance sensitive to the within canopy radiation regime 

tBS,λ (Ω0 ) , aBS,λ (Ω0 ) , tS,λ 	and aS,λ . The dependence of canopy absorptance on 

wavelength for the black soil problem (subscript K = “BS”) and S problem (K = “S”) 

can be derived (Knyazikhin et al., 1998a) as 

 

aK ,λ =
1−ω(λ0 ) ⋅ pK
1−ω(λ) ⋅ pK

⋅
1−ω(λ)
1−ω(λ0 )

⋅aK ,λ0
  (Equation 2-4) 

 

Here ω(λ)  is the leaf albedo (leaf reflectance + leaf transmittance), also called single 

scattering albedo (SSA). It is a stable characteristic of green leaves, although its 

magnitude can vary with leaf age and species. In order to obtain accurate leaf albedos 

for the eight biome types, we obtained leaf spectra data from several sources. Mean 

leaf reflectance and transmittance values were calculated for the eight biome types at 

given spectral bands. We stored the mean albedo in the LUT. Variable pK  is a 

wavelength independent coefficient defined as (Knyazikhin et al., 1998a; Panferov et 

al., 2001) 

 

pK =1−
IK ,BL4π∫V∫ (r,Ω) ⋅σ (r,Ω)dr dΩ
IK ,WL (r,Ω) ⋅σ (r,Ω)dr dΩ4π∫V∫

  (Equation 2-5) 

 

Where IK ,BS  and IK ,S  are solutions of the BS problem and S problem for black (ω 	=	0, 

subscript BL) and white (ω 	=	 1, subscript WL) leaves, and σ  is the extinction 

coefficient (dependent on vegetation types). V  is a parallelepiped where vegetation 

canopies are located. Its height coincides with the height of plants and its horizontal 

dimension coincides with the size of the pixels. The coefficient pK  depends on canopy 

structure and V 	and is an element of the LUT. Because the horizontal dimension of V  

coincides with the size of pixel, pK  is a resolution dependent parameter. A precise 

derivation of Equation 2-4, and Equation 2-5 is given in (Knyazikhin et al., 1999). 

Validation of relationships presented in Equation 2-5 with field measurements is 
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presented in (Panferov et al., 2001). Similar relationships are also valid for canopy 

transmittance (Knyazikhin et al., 1998a; Huang et al., 2007). Thus, given canopy 

absorptance and transmittance for the BS problem and S problem at a reference 

wavelength λ0 , one can evaluate these variables at any other wavelength λ . Therefore, 

we only store canopy absorptances aK ,λ0 , transmittances tK ,λ0 , the coefficients pK , and 

leaf albedo, instead of aK ,λ  and tK ,λ  in the LUT. Reflectances rBS,λ (Ω0 )  and rS,λ  can 

then be evaluated via the energy conservation law (Equation 2-2 and 2-3) and inserted 

into Equation 2-1. Note that BRF is a product of rBS,λ (Ω0 ) and wBS,λ .	 Similar to 

Equation 2-1, the fraction of radiation absorbed by vegetation, aλ (Ω0 ) , at wavelength 

λ  can be expressed as (Knyazikhin et al., 1998a) 

 

aλ (Ω0 ) = aBS,λ (Ω0 )+ aS,λ
ρeff (λ)

1− ρeff (λ) ⋅ rS,λ
tBS,λ (Ω0 )   (Equation 2-6) 

 

A value of FPAR can be explicitly evaluated as the integral of Equation 2-6 over 

photosynthetically active radiation (PAR, 400-700 nm) spectral region (Knyazikhin et 

al., 1998a). For the sake of brevity, all the details of theoretical formulation, 

mathematical evaluation and practical implementation of the LAI/FPAR algorithm are 

not provided here. Please check the MODIS Algorithm Theoretical Basis Documents 

(ATBD, Knyazikhin et al., 1999) for the details. 

 

2.4. Theory of spectral invariants  

Radiative transfer in vegetation canopies can be seen as a stochastic process, i.e. 

interacting photons can either be scattered or absorbed by a phytoelement (Stenberg et 

al., 2016). The probability of a scattering event, or SSA (ω(λ) ), depends on the 

wavelength and is a function of the leaf biochemical constitution. However, the 

probability that a photon will collide with elements again is determined by the 

structure of the canopy rather than the photon frequency or the optics of the canopy 

(Knyazikhin et al., 2005). Knyazikhin et al. (1998a) proposed the “ p –theory”, or 

“spectral invariants theory”, that describes the unique positive eigenvalue of the RT 

equation as the product of the leaf albedo and a wavelength–independent parameter ( p , 

denoted as	 pK 	hereinabove). This theory laid the foundation for the synergistic LUT–
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based MODIS LAI/FPAR algorithm.  

 

The spectral invariant principle is an important concept, because knowing the 

invariants of the canopy and the SSA of an average phytoelement at any wavelength 

makes it possible to reconstruct the radiation field of the canopy at any wavelength 

(Wang et al., 2003; Mõttus and Stenberg, 2008). Introducing spectral invariant 

parameters permits decoupling of the structural and radiometric components of any 

optical sensor signal, which is the theoretical foundation of optimizing configurable 

parameters to achieve inter–sensor consistency in multi–sensor LAI/FPAR retrievals. 

Thus, the MODIS LAI/FPAR algorithm is applicable to any optical sensor by selecting 

the proper sensor–specific values of SSA. For MODIS LAI/FPAR algorithm, the 3D 

radiative transfer equation was used to generate the LUT – a set of tabulated BRF 

values (solution of the “BS-problem” and “S-problem”) as a function of SSA, for 

various LAI and sun-view geometries. To achieve accurate retrievals from a particular 

sensor like VIIRS, the simulated surface reflectances (i.e., BRFs derived from LUT) 

should be adjusted to be consistent with the expected range of the measured surface 

reflectances. The simulated surface reflectances are highly sensitive to leaf SSA for 

medium-to-high LAI and to soil reflectances for low LAI. The SSA is also a function 

of the spatial scale, therefore, it accounts for the variation in BRFs not only with 

sensor spectral characteristics but also with sensor spatial resolution (Ganguly et al., 

2008a). Hence, a BRF can be computed for the sensor-specific resolution and spectral 

bands by adjusting the SSA.  

 

2.5. Inverse problem and stabilized precision (Observation and model) 

The inverse problem of retrieving LAI/FPAR from atmospherically corrected BRFs 

is formulated as follows. Let r1,r2,…,rn  be atmospherically corrected surface BRFs at n 

spectral bands. The surface reflectances are obtained by correcting at-sensor radiance for 

atmospheric effects. The correction technique introduces errors in the surface reflectance 

product. The operational LAI/FPAR algorithm treats spectral BRFs as independent random 

variables with finite variances σ k
2, k =1,2,…,n , and assumes that the deviations 

εk = (rk −mk ) /σ k  follow Gaussian distribution (Wang et al., 2001). Here mk  is the 

mathematical expectation of rk , which approximates a true value. The random variable 
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χσ
2 [r−m]= εk

2

k=1

n

∑ =
(rk −mk )

2

σ 2
kk=1

n

∑
  (Equation 2-7) 

 

characterizing the proximity of atmospherically corrected data r= (r1,r2,…,rn )  to the 

expected values m= (m1,m2,…,mn )
 
has a chi-square distribution. The inequality χσ

2 ≤ n  

indicates good accuracy. We assume that the atmospheric correction algorithm provides 

spectral reflectance r satisfying χσ
2 ≤ n

 
with a probability 1-α . Dispersions 

σ = (σ 1,σ 2,…,σ n )  are observation precisions, i.e., precision in the BRF product. The 

deviation of 𝐦 from a true vector is the measurement accuracy, or bias. The uncertainty is 

defined as the Root-Mean-Squared-Error (RMSE) between the estimated and true values, 

which depends on both accuracy and precision (Tan et al., 2005). 

 

The operational algorithm compares measured spectral BRF, 𝐫, with those evaluated 

from model-based entries, rM = (rM ,1,rM ,2,…,rM ,n ) , stored in the LUT. The model-based 

spectral BRF also has errors, which are characterized by values εM ,k = (rM ,k −mM ,k ) /σM ,k . 

Dispersions σ M = (σM ,1,σM ,2,…,σM ,n )  are model precisions, which are determined by the 

range of natural variation in biophysical parameters that are not accounted for by the model. 

Deviations of the model predictions, mM ,k , from true values characterize the model accuracy. 

 

Both the observation and model precisions must be taken into account when 

comparing measured and modeled BRFs (Wang et al., 2001). Ignoring the model precision in 

the retrieval algorithm can cause a destabilization of the retrieval process. Wang et al. (2001) 

introduced a stabilized precision, δ = (δ1,δ2,…,δn ) , which prevents the destabilization and 

minimizes the impact of model and observation precisions on LAI/FPAR retrievals. The 

stabilized precision is a function of σ M and σ . The main LAI/FPAR algorithm uses the 

stabilized precision to select acceptable solutions, i.e., all canopy/soil parameters for which 

modeled, rM , and measured, r , spectral BRFs agree within the stabilized precisions, i.e., 

χδ
2[r− rM ]≤ n . In the operational LAI/FPAR algorithm, relative stabilized precision (υk ), 

i.e., δk / rk  is used and MODIS specific υk  can be found in Table 2-4. The mean values of 

LAI/FPAR and their dispersions are reported as retrievals and their reliabilities. A detailed 
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mathematical justification of this procedure is presented in Knyazikhin et al. (1998a) and 

Wang et al. (2001).  

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 2-4. Dependence of the retrieval index (RI) on uncertainties, υ, in measurements and 
simulations. (A) RI change under setting υnir constant and υred varying conditions. (B) Dispersion of 
LAI (DLAI) change as a function of LAI. Biome 3 (Broadleaf crops) case is given as an example. (C) 
and (D) are same as (A) and (B) but setting υnir varying and υred constant conditions. 

  

Here, one experimental test is given to briefly illustrate the performance of the 

algorithm with respect to input/model uncertainties based on VIIRS surface reflectance data. 

To quantify the performance, the Retrieval Index (RI) is defined, which is the percentage of 

pixels for which the main algorithm produces retrievals (Equation 2-8). This index 

characterizes the spatial coverage of the best quality, high precision retrievals and not 

their accuracies.  

 

  (Equation 2-8) 
RI = numberof mainalgorithmretrieved pixels

numberof total retrieved pixels
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Figure 2-4 demonstrates the dependence of the RI on υk . The RI increases with an increase in 

υk , but the reliability of retrievals (DLAI, dispersion of LAI) decreases. If υk underestimates 

the true overall uncertainty, the algorithm fails to localize a solution, thus resulting in low 

values of RI. On the other hand, if υk  is an overestimates the algorithm admits a large 

number of solutions including non-physical solutions, thus resulting in high values of RI and 

DLAI. A critical value of υk  is one that optimally approximates the unknown true overall 

uncertainty. See Section 2.6 and 2.7 for VIIRS practice.  

 

The LAI/FPAR operational algorithm uses BRF at two (n=2) spectral bands, red 

(band k=1) and NIR (k=2), to retrieve LAI/FPAR. Let mT = (mT ,1,mT ,2 )
 
and 

mM = (mM ,1,mM ,2 )
 
represent true values of the spectral BRF and expected values predicted 

by the model. It follows from the Minkowski inequality (Wang et al., 2001; Bronshtein et al., 

2013) that 

χδ[r− rM ]≤ χδ[r−m]+ χδ[rM −mM ]+ χδ[m−mM ]
  (Equation 2-9)

  

This equation shows that χδ  depends on how the modeled BRF differs from (a) 

“true” canopy BRF and (b) observed BRF. For example, the use of a very accurate model, 

i.e., mT =mM , maximizes the term χδ[m−mM ] . This may cause a “true” LAI to be outside 

of the set of acceptable solutions, i.e., it does not pass the comparison test. This term vanishes 

if one uses a model that tends to simulate the measurements, i.e., mM =m . This however 

increases the contribution of the term χδ[rM −mM ] . The calibration therefore is reduced to 

finding a surface reflectance model that optimally approximates the observed, m , and true 

surface spectral BRF, mT .
  

 

The operational LAI/FPAR algorithm is based on the theory of canopy spectral 

invariants, which permits an accurate decoupling of the structural and radiometric 

components of modeled and/or measured spectral BRF (Knyazikhin et al., 1998a; Huang et 

al., 2007; Ganguly et al., 2008a; Knyazikhin et al., 2013). The structural component 

determines the BRF shape whereas the SSA controls its magnitude and accounts for the 

variation in BRF with sensor spatial resolution and spectral band composition (Ganguly et al., 
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2008a). Thus the SSA and RSP that appear in the surface BRF model are the adjustable 

parameters that control Equation 2-9 and consequently the performance of the LAI/FPAR 

retrieval technique.  

 

2.6. Characteristics of Land Surface BRFs 

2.6.1. Spectral Characteristic  

MODIS has 36 bands and VIIRS has 22 bands including a panchromatic day/night 

band (DNB) used for low light detection. A detailed comparison between MODIS and VIIRS 

spectral bands is documented in (Xiong et al., 2014). Figure 2-5 compares the Relative 

Spectral Response (RSR) of red and NIR bands between MODIS and VIIRS (available at 

http://mcst.gsfc.nasa.gov/calibration/parameters and 

http://www.star.nesdis.noaa.gov/jpss/VIIRS.php for MODIS and VIIRS, respectively). 

We notice that VIIRS has a NIR band RSR similar to MODIS, with almost the same 

bandwidth (0.039 vs. 0.036um) and slightly right-shifted center band (0.865 vs. 0.859um). 

However, the RSRs of MODIS and VIIRS red bands show obvious differences. VIIRS has 

broader bandwidth with the Full Width at Half Maximum (FWHM) ranging from 0.60 to 

0.68um compared to MODIS’s FWHM (0.62-0.67). The center red bands for VIIRS and 

MOIDS are 0.639 and 0.645um, respectively.  

 

 
Figure 2-5. Normalized spectral response curves of visible infrared imaging radiometer suite (VIIRS) 
and moderate-resolution imaging spectroradiometer (MODIS) bands: Red (VIIRS-I1 and MODIS-
B1), and near-infrared (VIIRS-I2 and MODIS-B2). Red and blue lines stand for MODIS and VIIRS 
bands, respectively. 
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2.6.2. Comparability of BRFs  

To reduce computational cost of the optimization practice, VIIRS BRFs should be 

investigated first. The investigation aims: (a) to assure comparability between VIIRS and 

MODIS BRF precisions and (b) to quantify BRF differences between two sensors. We 

used the latest version of VIIRS (V1, VNP09GA) and Aqua MODIS (C6, MYD09GA) 

L2G surface reflectance data. Daily L2G surface reflectance data for the period July 4–

11, 2015 are employed in this analysis. Global daily surface reflectance data are used. 

Eight select tiles (one per biome) are given as an example for each biome. The quality of 

both VIIRS and MODIS surface reflectance products are reported by QA. To achieve a 

precise measure of BRF precision and difference, the “best quality” observations are 

used, i.e., cloud free, snow free, aerosol low and average, adjacent cloud free and cirrus 

free observations. Discrepancy in sun-sensor geometry between the two datasets is 

minimized by only including minimally different observations (solar zenith angle 

difference<2.5°, solar azimuth angle difference <5°, sensor zenith angle difference <5°, 

sensor azimuth angle difference <5°). 

 
 
Table 2-2. Precision comparison between MODIS MYD09GA and VIIRS VNP09GA. To minimize 
the impact of geometrical discrepancy between two sensors, strict angle difference threshold was 
applied. Only cloud free, shadow free, snow/ice free, low-average aerosol and cirrus free observations 
were sampled for this comparison purpose. 

Biome N Difference of CVred Difference of CVnir 
Biome 1 6671803 0.031 0.010 
Biome 2 7704215 0.007 0.001 
Biome 3 974889 0.020 0.006 
Biome 4 8084317 0.033 -0.002 
Biome 5 1876055 0.003 -0.014 
Biome 6 630298 0.059 0.006 
Biome 7 479545 0.065 0.034 
Biome 8 192863 0.030 0.021 

All 26613985 0.025 0.009 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 2-6. Spatial distribution of quantified precision (coefficient of variation, CV) of VIIRS and 
MODIS BRFs. This is an example of Biome 1 (Grasses/Cereal crops) dominant tile (H17V07). (A) 
and (B) display CVs of VIIRS BRFred and BRFnir, respectively. (C) and (D) are same and (A) and (B) 
but for MODIS.  

 
If there are at least four daily surface reflectances of best quality during the 8-

day period, then the precision comparison analysis was performed. Precision in surface 

reflectance from pixels with best quality data will therefore be due to incomplete 

atmospheric correction, while uncertainties in reflectances from pixels with non-best 

quality data will be due to improper cloud screening and instrumental anomalies (Tan 

et al., 2005). For the time being, it is assumed that the surface is unchanged over the 

measurement period of 8 days and that the solar and measurement geometry impact is 

minimal. The coefficient of variation per pixel is calculated from best quality daily 

surface reflectances during the 8-day period. As timing and number of selected best 

quality observations have an effect on precision comparison, only those pixels 

confirming order and number of best quality observations are used for this 

investigation. The precision of input BRFs can be characterized by the coefficient of 
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variation (e.g., Hu et al., 2003; Tan et al., 2005) 

 

CV =
S
M   (Equation 2-10) 

 

where M is the mean of measurements and S is the standard deviation of the 

measurement. Here, precision comparisons are made using CVs rather than estimating 

relative stabilized precision of each sensor, as RSP is practically unmeasurable. Table 

2-2 summarizes the results. It suggests that overall BRFred of VIIRS has relatively 

lower precision (2.5%) than MODIS while BRFnir shows minimal difference (<1%). 

The difference of BRFred precision (BRFnir) depends on biome type and varies between 

0.3% (-1.4%) and 6.5% (3.4%). Figure 2-6 reveals strong spatial agreement between 

the two sensors and relatively lower and stable BRF input from NIR band than red 

spectral band. These generally comparable precision values justifies setting the 

relative stabilized precision to that used to generate C6 MODIS LAI/FPAR product 

(See Table 2-4). Also this result supports the relatively uncertain red band BRF 

reported in (http://modis-sr.ltdri.org/pages/validation.html). 

 

Unlike the evaluation of precision, all available daily VIIRS/MODIS 

observations with best quality are used to quantify BRF differences. Table 2-3 

summarizes the absolute and relative differences. The magnitude of difference varies 

by biome type. Biome 2 (Shrublands) has most comparable BRFs whereas Biome 5 

(Evergreen broadleaf forests) shows the largest relative discrepancy. Generally VIIRS 

shows relatively lower BRFred (-13.9% ~ -2.9%) and higher BRFnir (1.2% ~ 4.9%) 

indicating possible overestimation of LAI/FPAR and declining performance of the 

main algorithm without sensor-specific parametric optimization  (Figure 2-7). Indeed, 

global VIIRS retrievals without parametric optimization reveal clear LAI/FPAR 

overestimation and reduced performance across all biome types (Figure 2-10 and 

Table 2-5). These results justify SSA based VIIRS specific parametric optimization. 
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Table 2-3. Comparison between MODIS MYD09GA and VIIRS VNP09GA. To minimize the impact 
of geometrical discrepancy between two sensors, strict angle difference threshold was applied. Only 
cloud free, shadow free, snow/ice free, low-average aerosol and cirrus free observations were sampled 
for this comparison purpose. 

Biome N ΔBRFred ΔBRFNIR ΔBRFred% ΔBRFNIR% 
1 6671803 -0.0036 0.0096 -3.09 3.30 
2 7704215 -0.0033 0.0088 -2.91 3.29 
3 974889 -0.0045 0.0132 -6.13 3.84 
4 8084317 -0.0035 0.0076 -5.64 3.06 
5 1876055 -0.0039 0.0158 -11.22 4.91 
6 630298 -0.0036 0.0102 -11.21 3.43 
7 479545 -0.0032 0.0031 -9.89 1.44 
8 192863 -0.0041 0.0027 -13.89 1.17 

	
 

 
(A) 

 
(B) 

Figure 2-7. (A) Histogram of absolute BRF difference at red and NIR band across all biomes. 
Positive difference means VIIRS BRF is higher than MODIS one, vice versa. (B) Relative BRF 
difference at red and NIR band are plotted in spectral domain. Obvious left- and up- ward spectral 
shift is observed. For this comparison, the latest version of VIIRS (VNP09GA) and MODIS 
(MYD09GA) L2G daily surface reflectance data sets are used (July 4–11, 2015). And 
strict quality control and minimal sun-view geometry difference are applied to use only 
best quality observations. 
 

2.7. Solving the optimization problem 

The performance metrics of the LAI/FPAR operational algorithm include (1) the 

retrieval index (RI, Equation 2-8), (2) RMSE between a reference LAI value and LAI 

value retrieved by the main algorithm, and (3) proximity of LAI histograms obtained 

from the main algorithm and reference data. The retrieval index is the percentage of 

pixels for which the main algorithm produces a result. This index characterizes the 

spatial coverage of the best quality, high precision retrievals and not their accuracies. 

The RMSE and proximity between main algorithm retrievals and reference data 
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characterize the product accuracy. To quantify the proximity of LAI histograms 

between retrievals and reference datasets, a complementary decision rule, which is 

checking for Accuracy, Precision and Uncertainty (APU) over possible LAI ranges 

(Figure 2-8B, an example for biome 6), is implemented to mediate unexpected bias in 

addition to RI & RMSE metrics (Figure 2-8A). Furthermore, an algorithm match index 

(AMI) that accounts for the rate of retrieved pixels via the same algorithm path (i.e., 

both retrieval and reference are from the main algorithm with or without saturation) is 

implemented because increasing mismatch magnifies disagreement (Myneni et al., 

2002; Yan et al., 2016a). 

 

AMI = numberof retrieved pixelsvia samealgorithm path
numberof total retrieved pixels   (Equation 2-11) 

 

There are at least three reasons justifying the use of MODIS C6 LAI/FPAR 

retrievals as reference data: (1) ground LAI/FPAR measurements are spatiotemporally 

limited to solve the optimization problem, (2) MODIS operational algorithm is well-

optimized for C6 BRF inputs, and (3) the ultimate goal is assuring consistency between 

VIIRS and MODIS. Thus the validated global MODIS C6 LAI/FPAR product with 

good quality pixel BRFs generated by the main algorithm during the compositing 

period between 4 and 11 July 2015 is used as the reference data set. The performance 

metrics are a function of the SSA at red and NIR spectral bands. The optimization 

procedure therefore can be formulated as follows: find a combination of SSAs at red, 

ωred, and NIR, ωnir, spectral bands which (a) maximizes the RI; (b) minimizes the 

RMSE and (c) also minimizes the disagreement between LAI histograms generated by 

the main algorithm VIIRS retrievals and MODIS C6 LAI product. This procedure is 

illustrated in Figure 2-8. First, we calculated the RI and RMSE as a function of ωred 

and ωnir. Second, we separated a subset of first 10 best pairs (ωred, ωnir) rather than 

using a pre-set threshold because RI and RMSE vary significantly by biome type and 

sample datasets. Finally, we selected a pair (ωred, ωnir) from this subset for which 

disagreement between LAI histograms obtained from the main algorithm retrievals and 

MODIS C6 LAI was minimized.  
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(A) 

 
(B) 

Figure 2-8. (A) The difference (RMSE) between MODIS and VIIRS LAI values and the Retrieval 
Index (RI) as a function of the single scattering albedo at red (ωred) and NIR (ωnir) spectral bands. 
Each circle represents possible combination of both parameters. Diamond and star markers represent 
derivation of MODIS based and optimally selected parametric combinations, respectively. (B) LAI 
histograms of MODIS and VIIRS with quantified APU (Accuracy, Precision and Uncertainty) 
statistics. Since considering only RI and RMSE introduces biased optimized single scattering albedo 
depending on given sample characteristics, we attempted to take account of APU measures. The 
algorithm match index (AMI) is additionally used to quantify their agreement. Here, three numbers 
following MV-RI represents rates of matched main algorithm path under without saturation (67.3%), 
saturation (29.2%) and both (96.6%) conditions. In this example, AMI is 96.6% suggesting that only 
3.4% of the pair (retrieval and reference) pixels are retrieved with different condition. 

 

Table 2-4 shows values of SSA at red and NIR spectral bands used in the 

MODIS C6 operational algorithm and adjusted for VIIRS data. These values optimally 

approximate the observed and true surface spectral BRF values. The biome-specific 

SSA show lower values at red than the heritage case of MODIS and higher values at 

near-infrared band. These changes are in agreement with our BRF evaluation results 

presented in Section 2.6.2. Figure 2-9 shows an example of model-based LUT entries 

used in the MODIS C6 operational algorithm and adjusted for the VIIRS data. For a 

given LAI and soil pattern, the VIIRS LUT generates slightly lower BRFred and higher 

BRFnir values compared to those for MODIS MYD09GA BRF data. The main 

algorithm accumulates acceptable solutions, i.e., all canopy/soil parameters for which 

observed spectral BRF, r , agree with LUT entries, rM , within the stabilized 

precisions, i.e., χδ
2[r− rM ]≤ 2 . Figure 2-8B shows the distribution of LAI in the NIR 

vs red spectral plane. The retrieval domain is a set of points on the spectral plane for 

which the model-based main algorithm retrieves at least one acceptable solution. In the 

case of dense canopies, the reflectances saturate, and therefore are weakly sensitive to 

changes in canopy properties. The saturated reflectances are shown as a green-to-

yellow subset in the retrieval domain. The configuration of the retrieval domain is 

0
0.1

0.2
0.3

0.4
0.5 0.5

0.6
0.7

0.8
0.9

1
0

20

40

60

80

100

RMSE

 

ωnirωred

 

R
et

rie
va

l I
nd

ex
 (%

)

0.5

1

1.5

2

2.5

Possible cases
MODIS LUT (ωred=0.14, ωnir=0.84, RI=95.69, RMSE=0.67)
Best for VIIRS (ωred=0.12, ωnir=0.84, RI=97.85, RMSE=0.69)

0 1 2 3 4 5 6 7
0

5

10

15

20

25

Fr
eq

ue
nc

y 
(%

)

Leaf Area Index (LAI)

 

 

0

1.4

2.8

4.2

5.6

7

A
PU

 (U
ni

t L
A

I)

All (MOD Main), Npix = 18198468

MOD(Mean=3.974, std.=1.858)
VIR(Mean=4.491, std.=1.975)
A(= 0.517) M−RI(33.8,66.2,100.0)
P(= 1.836) V−RI(24.8,59.3,84.1)
U(= 1.907) MV−RI(17.9,49.2,67.1)

0 1 2 3 4 5 6 7
0

5

10

15

20

25

Fr
eq

ue
nc

y 
(%

)

Leaf Area Index (LAI)

 

 

0

1.4

2.8

4.2

5.6

7

A
PU

 (U
ni

t L
A

I)

QC (MOD Main), Npix = 3699241

MOD(Mean=3.733, std.=2.034)
VIR(Mean=3.844, std.=2.109)
A(= 0.110) M−RI(38.6,61.4,100.0)
P(= 0.889) V−RI(39.1,55.1,94.2)
U(= 0.896) MV−RI(34.6,51.6,86.2)

0 1 2 3 4 5 6 7
0

8

16

24

32

40
Fr

eq
ue

nc
y 

(%
)

Leaf Area Index (LAI)

 

 

0

1.4

2.8

4.2

5.6

7

A
PU

 (U
ni

t L
A

I)

QC & Geo. (MOD Main), Npix = 372640

MOD(Mean=2.491, std.=1.970)
VIR(Mean=2.571, std.=2.019)
A(= 0.080) M−RI(68.8,31.2,100.0)
P(= 0.454) V−RI(67.9,31.0,98.9)
U(= 0.461) MV−RI(66.6,28.9,95.5)

0 1 2 3 4 5 6 7
0

8

16

24

32

40

Fr
eq

ue
nc

y 
(%

)

Leaf Area Index (LAI)

 

 

0

1.4

2.8

4.2

5.6

7

A
PU

 (U
ni

t L
A

I)

QC & Geo. (Both Main), Npix = 368702

MOD(Mean=2.458, std.=1.950)
VIR(Mean=2.530, std.=1.983)
A(= 0.071) M−RI(69.5,30.5,100.0)
P(= 0.436) V−RI(68.6,31.4,100.0)
U(= 0.442) MV−RI(67.3,29.2,96.6)



 VNP15 LAI/FPAR ATBD Version 1.1	
	

	 29	

controlled by the stabilized precision and single scattering albedo values at red and 

NIR spectral bands.  

 

Table 2-4. The single scattering albedos (ω) and relative stabilized precision (υ) for red and near-
infrared wavelengths from MODIS LUT heritage and adjusted VIIRS LUT	

 MODIS LUT based υ MODIS LUT based ω Adjusted VIIRS LUT ω 
Biome υred υnir ωred ωnir ωred ωnir Δωred Δωnir 

1 0.2 0.05 0.18 0.88 0.14 0.89 -0.04 +0.01 
2 0.2 0.05 0.16 0.84 0.13 0.86 -0.03 +0.02 
3 0.2 0.05 0.10 0.94 0.05 0.95 -0.05 +0.01 
4 0.2 0.05 0.14 0.88 0.09 0.89 -0.05 +0.01 
5 0.3 0.15 0.151 0.910 0.10 0.93 -0.051 +0.02 
6 0.3 0.15 0.14 0.84 0.12 0.85 -0.02 +0.01 
7 0.3 0.15 0.14 0.70 0.11 0.70 -0.03 0 
8 0.3 0.15 0.14 0.70 0.11 0.70 -0.03 0 

 

 
(A) 

 
(B) 

Figure 2-9. (A) Look-Up-Table (LUT) entries on the Near-infrared (NIR) vs. red spectral plane 
adjusted for MODIS MYD09GA (circles) and VIIRS VNP09GA (asterisk) BRF data. (B) Retrieval 
domain of the algorithm calibrated for VIIRS BRF data. The main LAI algorithm can retrieve a LAI 
value only if the observed pair (BRFred, BRFnir) of VIIRS BRF at red and NIR spectral bands falls 
within the retrieval domain. Color bar shows returned LAI value per unit red vs NIR spectral plane. 
The LUT entries and retrieval domain are for broadleaf forests (Biome 6), solar zenith angle between 
22.5° to 37.5°, view zenith angle between 0° to 8.5° and the relative azimuth angle between 0° to 
25°. 

 

Figure 2-10 shows a comparison of Aqua MODIS C6 and VIIRS LAI/FPAR 

without (cyan) and with (magenta) parametric optimization generated by the main 

algorithm during the compositing period between 4 and 11 July 2015. Note that the 

results shown in this Section are based on the data used for optimization – thus, further 

consistency evaluation is required. The majority of the retrievals without adjustment 

tend to overestimate LAI (0.15) and FPAR (0.03) as expected from BRF comparisons 
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(See Section 2.6.2). In particular, forest biomes (biome 5 to 8) exhibit larger LAI 

overestimation (0.17 – 0.43) whereas non-forest biomes (biome 1 to 4) show relatively 

higher FPAR disparity (0.03 – 0.04). Overall difference between VIIRS and C6 LAI 

values has been reduced from 0.43 to 0.08 LAI units after algorithm calibration for 

VIIRS data (Table 2-5). Parametric adjustment also reconciles the gap between C6 and 

VIIRS FPAR values from 0.03 units to 0.005 FPAR units. The results demonstrate that 

the implemented optimization method and parameter selection were successful in 

reducing the bias between reference and VIIRS retrievals and also help closely track 

the frequency distribution of MODIS C6 LAI/FPAR data (Figure 2-11).  

 

Table 2-5. Comparison between VIIRS and MODIS LAI/FPAR retrievals with MODIS-LUT and 
Optimized-LUT for VIIRS. Bias is calculated by subtracting MODIS retrieval from VIIRS’.	

Biome N 
LAI FPAR 

MODIS-LUT Optimized-LUT MODIS-LUT Optimized-LUT 
Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

1 6671803 0.109 0.406 -0.003 0.338 0.028 0.091 0.005 0.083 
2 7704215 0.099 0.312 0.008 0.240 0.030 0.082 0.007 0.072 
3 974889 0.166 0.497 0.011 0.399 0.033 0.110 0.003 0.101 
4 8084317 0.193 0.519 0.034 0.424 0.038 0.105 0.008 0.094 
5 1876055 0.205 0.702 0.041 0.659 0.003 0.089 -0.003 0.090 
6 630298 0.174 0.613 -0.033 0.537 0.017 0.065 -0.001 0.059 
7 479545 0.239 0.871 -0.035 0.800 0.025 0.137 -0.003 0.133 
8 192863 0.427 0.858 0.084 0.747 0.026 0.078 0.001 0.074 

Total 26613985 0.146 0.472 0.014 0.398 0.030 0.094 0.005 0.086 
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(A) 

 

 
(B) 

Figure 2-10. (A) LAI difference (VIIRS LAI – MODIS LAI) distributions of before (MODIS 
LUT) and after optimization (Optimized LUT). Global surface reflectance and its retrieval during 
a compositing period (July 4 to July 11) in 2015 are used in this analysis. Cyan and magenta 
violin plots represent distribution of differences under MODIS LUT and newly optimized VIIRS 
own LUT. A blue line in each violin plot stands for mean value of differences. (B) Same as (A) 
but for FPAR. 
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(A)  

(B)  

(C)  

(D)  

Figure 2-11. Histogram of globally generated VIIRS and MODIS LAI/FPAR retrievals. The 
retrievals are from the latest version of L2G VNP09GA and MYD09GA data in July 2015 
(DOY185-192) and optimized LUTs for each sensor. Observations satisfying best quality and 
minimal geometry difference requirements are considered for retrievals. Only main algorithm under 
both unsaturation and saturation conditions are used. Red and blue solid lines represent Aqua 
MODIS and VIIRS retrievals, respectively. And dotted lines show mean value of derivations. Here, 
four biomes are listed as examples. (A) Biome1: Grasses/Cereal crops, (B) B4: Savanna, (C) B6: 
Deciduous Broadleaf forest and (D) B7: Evergreen Needleleaf forest. 
 

Not surprisingly, the adjustment procedure also results in improving the spatial 

coverage of the VIIRS product, i.e. increased RI. Figure 2-12 shows the before- and 

after-optimization distribution of algorithm path for VIIRS and Aqua MODIS input 
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BRFs as a function of biome type. The case before-adjustment shows comparable RIs 

over non-forest biomes (less by 0.5-1.7%) but significantly less RIs in forest biomes 

(less by 6.0-12.0%). The optimized VIIRS LUT yields equivalent rates (within ±1.3% 

RI difference) of main algorithm retrievals over all biomes. The saturation frequency 

and dispersion of the retrieved LAI distribution are two elements by which the quality 

of the retrieval can be assessed. The accuracy of the retrieval decreases under 

conditions of saturation, that is, the reflectance data contain less accurate information 

about the surface (Knyazikhin et al., 1998a). Therefore, the saturation frequency and 

the threshold LAI value of saturation on a biome-by-biome basis are important criteria 

for assessing the accuracy of the retrievals. The probability of retrieving the highest 

quality LAI/FPAR values (i.e., main algorithm without saturation condition) is higher 

than 90% for non-forest biomes. Broadleaf forests (biome 5 & 6) represent dense 

canopies, thus the majority of the LAI/FPAR values are retrieved under the condition 

of saturation and therefore have moderate quality.  

 

  
Figure 2-12. Algorithm retrieval rate (%) of MODIS C6 (left bars) and VIIRS (right bars) by biome 
types. (A) Before adjustment and (B) after adjustment. Retrievals during a compositing period (July 
4 to July 11) in 2015 are used. Algorithm retrieval rate is defined as the ratio of the number of pixels 
with LAI and FPAR retrieved by each algorithm path to the total number of retrievals by both the 
main and backup algorithms. Legends: Main – Main algorithm was executed; Main-S - Main 
algorithm was executed. Saturation; BackUp-G - View/sun zenith angle too low. Backup retrievals; 
BackUp-O - Main algorithm fails. Backup retrievals; Not Retrieved - not executed because BRF is 
not available. 
 

2.8. Backup Algorithm 

If there are no candidate biome/canopy models that can pass the comparison test 

for a given pixel, a backup algorithm is triggered to estimate LAI and FPAR using the 

Normalized Difference Vegetation Index (NDVI). This backup algorithm requires a 
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land cover classification that is compatible with the RT model used in their derivation. 

Backup algorithm uses regression curves to estimate LAI and FPAR values, namely, 

 

LAI = f1(NDVI ), FPAR = f2 (NDVI )   (Equation 2-12) 

 

Here, f1 and f2 are biome dependent regression curves which are derived as follows. 

Based on finalized main algorithm LUT, VIIRS LAI/FPAR backup LUT using LAI-

NDVI or NDVI-FPAR empirical relations have been developed as: (Step 1) Collect all 

main retrievals from global LAI retrievals and their corresponding NDVI values. (Step 

2) Obtain mean NDVI of binned LAI intervals (300 intervals for the LAI range 0-7). 

(Step 3) Regress LAI-NDVI relation and obtain NDVI-LAI LUT (2nd order 

exponential and spline fitting for LAI-NDVI and FPAR-NDVI respectively). (Step 4) 

Extract LAI, FPAR and NDVI with unequal step used for MODIS algorithm. This 

allows more frequent sampling of parts of the LAI-NDVI curve, where shape of the 

curve changes rapidly. Figure 2-13 shows an example of VIIRS LUT preparation for 

biome 1 (Grasses/Cereal crops). The empirically derived regression curves of NDVI-

LAI and NDVI-FPAR for all 8 biomes can be found in Figure 2-14. The backup 

algorithm consists of a direct FPAR and LAI retrieval using the pixels biome-class and 

the current pixel’s NDVI value as the search keys. In the LUT itself, there are 20 

unequal-interval LUT records per biome class. The backup LUT is summarized in 

Table 2-6.  
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Figure 2-13. Schematic illustration of the backup algorithm. (A) Observed VIIRS LAI-NDVI 
relationship from main algorithm retrievals. Background density plot summarizes globally collected 
main algorithm based LAI-NDVI scatters. Red and blue lines represent sets of mean and standard 
deviation (±1std) of NDVIs within binned LAI interval, respectively. (B) Same as (A) but for FPAR-
NDVI. Biome 3 (Broadleaf crops) case is introduced as an example. 
 

 

 
(A) 

 
(B) 

Figure 2-14. Empirically derived regression curves of NDVI-LAI (A) and NDVI-FPAR (B) for 8 
biomes. The regressed relationships are based on global main algorithm retrievals. Parametrically 
optimized main algorithm LUT and VIIRS V1 VNP09GA are used to retrieve the global retrievals 
data sets. Colored lines represent each biome type, i.e., B1: Grasses/Cereal crops, B2: Shrubs, B3: 
Broadleaf crops, B4: Savanna, B5: Evergreen Broadleaf forest, B6: Deciduous Broadleaf forest, B7: 
Evergreen Needleleaf forest, B8: Deciduous Needleleaf forest. 
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Table 2-6. NDVI and corresponding values of LAI and FPAR in VIIRS V1 back-up LUTs 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
B1: Grasses/Cereal crops, B2: Shrubs, B3: Broadleaf crops, B4: Savanna,  
B5: Evergreen Broadleaf forest, B6: Deciduous Broadleaf forest, B7: Evergreen Needleleaf forest, B8: Deciduous Needleleaf forest. 

Biome1 Biome2 Biome3 Biome4 Biome5 Biome6 Biome7 Biome8 
NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR NDVI LAI FPAR 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.120 0.100 0.082 0.139 0.100 0.104 0.151 0.100 0.090 0.153 0.100 0.099 0.095 0.050 0.093 0.045 0.100 0.097 0.088 0.100 0.134 0.086 0.100 0.135 

0.361 0.500 0.252 0.398 0.500 0.294 0.422 0.500 0.292 0.360 0.500 0.288 0.129 0.100 0.098 0.411 0.500 0.344 0.343 0.500 0.313 0.351 0.500 0.327 

0.524 0.900 0.401 0.564 0.900 0.426 0.602 0.900 0.441 0.508 0.900 0.397 0.162 0.150 0.101 0.600 0.900 0.462 0.512 0.900 0.440 0.522 0.900 0.451 

0.635 1.300 0.505 0.671 1.300 0.555 0.720 1.300 0.546 0.614 1.300 0.483 0.193 0.200 0.104 0.699 1.300 0.533 0.624 1.300 0.541 0.631 1.300 0.557 

0.676 1.500 0.547 0.709 1.500 0.601 0.764 1.500 0.589 0.655 1.500 0.518 0.234 0.270 0.112 0.730 1.500 0.566 0.665 1.500 0.583 0.670 1.500 0.608 

0.710 1.700 0.586 0.740 1.700 0.637 0.799 1.700 0.625 0.690 1.700 0.549 0.287 0.370 0.133 0.753 1.700 0.607 0.699 1.700 0.624 0.702 1.700 0.654 

0.738 1.900 0.620 0.765 1.900 0.666 0.828 1.900 0.656 0.719 1.900 0.577 0.348 0.500 0.209 0.770 1.900 0.655 0.726 1.900 0.662 0.728 1.900 0.696 

0.761 2.100 0.650 0.786 2.100 0.689 0.851 2.100 0.683 0.745 2.100 0.602 0.409 0.650 0.283 0.784 2.100 0.702 0.749 2.100 0.693 0.748 2.100 0.730 

0.780 2.300 0.677 0.802 2.300 0.710 0.870 2.300 0.704 0.766 2.300 0.625 0.448 0.760 0.340 0.795 2.300 0.740 0.767 2.300 0.718 0.765 2.300 0.758 

0.796 2.500 0.700 0.816 2.500 0.729 0.886 2.500 0.722 0.785 2.500 0.645 0.497 0.920 0.402 0.804 2.500 0.769 0.782 2.500 0.738 0.779 2.500 0.781 

0.809 2.700 0.722 0.827 2.700 0.746 0.899 2.700 0.737 0.800 2.700 0.663 0.542 1.090 0.462 0.811 2.700 0.790 0.795 2.700 0.755 0.790 2.700 0.800 

0.820 2.900 0.742 0.836 2.900 0.762 0.909 2.900 0.751 0.814 2.900 0.678 0.589 1.310 0.534 0.817 2.900 0.807 0.805 2.900 0.770 0.800 2.900 0.816 

0.830 3.100 0.760 0.844 3.100 0.776 0.917 3.100 0.765 0.826 3.100 0.691 0.648 1.680 0.663 0.823 3.100 0.819 0.814 3.100 0.783 0.808 3.100 0.830 

0.837 3.300 0.776 0.850 3.300 0.790 0.924 3.300 0.779 0.836 3.300 0.703 0.735 2.640 0.827 0.828 3.300 0.829 0.821 3.300 0.795 0.814 3.300 0.841 

0.844 3.500 0.790 0.856 3.500 0.802 0.930 3.500 0.792 0.845 3.500 0.715 0.775 3.560 0.851 0.833 3.500 0.837 0.827 3.500 0.806 0.820 3.500 0.851 

0.849 3.700 0.802 0.860 3.700 0.813 0.935 3.700 0.805 0.853 3.700 0.726 0.808 4.760 0.860 0.838 3.700 0.843 0.832 3.700 0.815 0.824 3.700 0.858 

0.854 3.900 0.812 0.864 3.900 0.824 0.938 3.900 0.816 0.860 3.900 0.737 0.825 5.520 0.864 0.842 3.900 0.848 0.837 3.900 0.824 0.829 3.900 0.865 

0.858 4.100 0.821 0.868 4.100 0.833 0.941 4.100 0.826 0.866 4.100 0.747 0.835 6.000 0.868 0.847 4.100 0.853 0.840 4.100 0.832 0.832 4.100 0.871 

1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 1.000 7.000 1.000 



 VNP15 LAI/FPAR ATBD Version 1.0	
	

	 37	

3. Product  

3.1. Product Description  

The VIIRS land product suite is composed of three different levels: Level 2 

(swath product – derived geophysical variables at the same resolution and location as 

Level-1 source data), Level 3 (gridded variables in derived spatial and/or temporal 

resolutions), and Level 4 (model output or results from analyses of lower-level data) 

data sets. Currently, the LAI/FPAR data set is defined as Level 4 processing because 

explicitly modeled photon transfer in vegetation medium is a fundamental basis of the 

operational algorithm. The operational VIIRS LAI/FPAR algorithm currently ingests 

(a) VNP09GA L2G 500m surface reflectance data (red and NIR bands, i.e., I1 and I2) 

with given geometry and QA information and (b) an 8-biome Land Cover 

classification map (MCDLCHKM, 500m). Details of input data are given in Section 

3.2. The algorithm generates two Level 4 products at the Land SIPS (Figure 3-3 and 

Table 3-1 for details). The 8-day composite LAI, FPAR and corresponding QC (i.e., 

SCF_QC layer in product) are shown in Figure 3-1 as an example. Histograms of 

corresponding input BRFs and retrieved LAI/FPAR also can be found in Figure 3-2.  

	

Table 3-1. LAI/FPAR products produced by Land SIPS   
Product ESDT Description 

LAI/FPAR 
(L4 Daily Tiled 

Products) 
VNP15A1# 

• VIIRS/NPP LAI/FPAR Daily L4 500m Global SIN 
Grid Product 

• Bands: I1 and I2 
• Inputs: VNP09GA/VNP15IP and MCDLCHKM 
• Format: hdf5 

LAI/FPAR 
(L4 8-day Composite 

Tiled Products) 
VNP15A2* 

• VIIRS/NPP LAI/FPAR 8-day Composite L4 500m 
Global SIN Grid Product 

• Bands: I1 and I2 
• Inputs: VNP15A1 
• Format: hdf5 

ESDT: Earth Science Data Type 
#: Will be archived but not available to public. 
*: Soon be available via Land Process Distributed Active Archive Center (LP DAAC) 
(https://lpdaac.usgs.gov) 
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(A) 

 
(B) 

 
(C) 

Figure 3-1. Global color-coded maps of S-NPP VIIRS Version 1.0 LAI (A), FPAR (B) and 
algorithm path (C). These maps are generated from compositing process using 8-daily global 
LAI/FPAR retrievals based on optimally parameterized Look-Up Table (between 4 and 11 July 
2015). Both quantities are dimensionless. Description for the legend of SCF_QC is given here:Main 
– Main algorithm was executed; Main-S - Main algorithm was executed. Saturation; BackUp-G - 
View/sun zenith angle too low. Backup retrievals; BackUp-O - Main algorithm fails. Backup 
retrievals; Not Retrieved - not executed because BRF is not available. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 3-2. Histogram of canopy reflectances for global VIIRS VNP09GA data in July 2015 
(DOY185-192) at red band (A), NIR (B) band. Histogram of retrieved LAI (C) and FPAR (D) based 
on optimally adjusted LUT. Colored lines represent each biome type, i.e., B1: Grasses/Cereal crops, 
B2: Shrubs, B3: Broadleaf crops, B4: Savanna, B5: Evergreen Broadleaf forest, B6: Deciduous 
Broadleaf forest, B7: Evergreen Needleleaf forest, B8: Deciduous Needleleaf forest. 
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3.2. Product Input  

3.2.1 Spectral Bands  

VNP09GA L2G 500m Surface Reflectance – I1 (red) and I2 (NIR) Band 

The VIIRS Level 2G surface reflectance products called VNP09GA are 

composed of all available surface reflectance observations for a given day over a set of 

tiles with global coverage. The first set of observations for each data set and grid cell 

are stored as a two-dimensional data set. Additional data layers are stored in a 

compacted format. By calculating observation score based on QA and geometry 

information, the algorithm produces the intermediate surface reflectance product that 

contains the best quality observation (i.e., VNP15IP). Then it ingests the best quality 

observations only to produce LAI/FPAR retrievals. Theoretically, the LAI/FPAR 

algorithm can make use of multiple atmosphere-corrected BRFs and their uncertainties 

(Wang et al., 2001). In practice, due to increasing uncertainty level by incorporating 

more spectral bands (Knyazikhin et al., 1999), the algorithm only uses red and NIR 

(i.e., I1 and I2) bands for the operational production (See Figure 3-3). Details of 

VNP09GA can be found in Franch et al. (2016) and Roger et al. (2016). 

 

3.2.2 Masks, Thresholds and Ancillary Data  

The algorithm choses a strategy to run through all available vegetated pixels 

without masking or screening process (e.g., cloud, aerosol and cloud shadow mask etc.) 

rather than pre-masking inputs before algorithm implementation. This is beneficial to 

minimize the impact of upstream products. The only required ancillary data for the 

LAI/FPAR algorithm is the global 8-biome map. Introducing this biome map enables 

simplified assumptions and standardized constants (e.g., vegetation and soil optical 

properties) that vary with biome and soil types only. Thus, using the biome map as 

prior-knowledge can reduce the number of unknowns of the “ill-posed” inverse 

problem (Myneni et al., 2002).  

 

Global Land Cover Classification Map (Biome Map) 

An accurate land cover map is a pre-requisite for choosing the appropriate 

relation between surface parameters (LAI and FPAR) and the satellite derived 

reflectances. The EOS MODIS LC science team has successfully provided global land 

cover maps at a 500m resolution with well-matured classification algorithm (C6). 

Several aspects of the algorithm have been improved: (a) Hierarchical classification 
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approach, (b) Random Forest classifier, (c) Improved training data, (d) Improved 

feature set and (e) Hidden Markov model (Gray et al., 2016). The map classifies global 

vegetation into eight biomes with different canopy and soil patterns (see Figure 2-3 

and Table 2-1). The eight biomes are: (B1) grasses and cereal crops; (B2) shrubs; (B3) 

broadleaf crops; (B4) savannas; (B5) evergreen broadleaf forests; (B6) deciduous 

broadleaf forests; (B7) evergreen needleleaf forests and (B8) deciduous needleleaf 

forests. Areal proportion of each biome is given in Table 3-2. Note that input global 

biome map for developing VIIRS LAI/FPAR algorithm and its production is supported 

from MODIS LC product at this stage and will be updated with VIIRS data at a later 

date. 

	

Table 3-2. Global biome map composition. This biome map composition is calculated from MODIS 
global biome map 2010 data which is used for VIIRS LAI/FPAR retrievals. 

Biome ID Biome Type Proportion (%) 
1 Grasses and Cereal crops 21.8 
2 Shrubs 14.8 
3 Broadleaf crops 2.8 
4 Savannas 17.0 
5 Evergreen broadleaf forests 10.0 
6 Deciduous broadleaf forests 3.7 
7 Evergreen needle leaf forests 4.3 
8 Deciduous needle leaf forests 1.4 
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3.3. Production Logic and Data Flow  

This section aims to briefly describe the data production logic and data flow 

scheme implemented in Land SIPS. 

 
Figure 3-3. Algorithm flow of VIIRS LAI/FPAR Version 1 production. VIIRS LAI/FPAR 
operational production separates two algorithm steps: a) daily LAI/FPAR algorithm (refers to 
PGE533) and b) 8-day compositing algorithm (refers to PGE534). Spatially gridded 8 daily 500m 
L2G VNP09GA and biome map are introduced as inputs to generate 8 consecutive daily VNP15A1 
products. Radiative Transfer (RT) theory based Main algorithm and empirical relation (LAI-NDVI or 
FPAR-NDVI) based back-up algorithm paths operate selectively. With 8-day compositing strategy, 
global 500m LAI/FPAR product (VNP15A2) is available. Note that daily LAI/FPAR algorithm 
ingests multiple observations from L2G surface reflectance and then generate the intermediate surface 
reflectance, geometry and QA (VNP15IP) for retrieval algorithm.	
	
3.3.1. LAI & FPAR Algorithm - Daily Logic (PGE-533) 

The following section briefly summarizes the high-level runtime logic 

implemented in VNP15A1: 
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• Upon initiation of the session (once per tile), the runtime inputs are retrieved 

from the process control file (.pcf) file provided by the high level 

scheduler/loader environment. 

• The PGE allocates all in-memory data structures it requires, opens the static 

ancillary HDF-EOS file (VNP15A1_ANC_V1.hdf) and builds an in-memory 

dictionary of its contents. 

• All spatial input HDF-EOS files are opened (land cover and 500 m surface 

reflectance files) and in-memory dictionaries are built of their contents. 

• The daily candidate output file is created, using field properties read at runtime 

from the ancillary file. 

• A row-wise processing loop is established, and each subsequent row from all 

input files is buffered into memory. 

• A pixel-wise processing loop is established, and for each pixel, input fields are 

decoded from their digital representation (integer) to their biophysical form 

(floating point) using {gain, offset} calibration factors. QA fields from the 

inputs are also checked, in order to pass-through all pixels not classified as 

"land" or otherwise of unsuitable quality. 

• The main RT based retrieval method is performed on the pixel, using the 

channel-wise reflectances and pixel geometry. An estimate of FPAR and LAI 

(and QA for each) is then calculated for the pixel. 

• The biophysical estimates are encoded to their digital (integer) representations, 

and are placed in the output buffer. 

• When the current row is complete, it is written out to the open HDF-EOS 

archive product file. 

• When all rows are complete, final ECS metadata processing is performed, 

whereby the ECS metadata fields are set into their blocks, and finally written out 

to the product output file. 

• Final session cleanup tasks are then performed, where all dynamic memory is 

released, files are closed. 

 

3.3.2. LAI & FPAR Algorithm - 8-day Compositing Logic (PGE-534) 

The VNP15A2 (PGE-534) executable accepts a set of candidate tiles produced 

by the daily VNP15A1 process, and composites these using a simple selection rule 
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whereby the pixel with the maximum FPAR (across the 8 days) is selected for 

inclusion in the output tile of identical format. Relevant QA and other tile-level 

metadata are taken from the day chosen to contribute its primary FPAR. The same day 

chosen to represent the FPAR measure also contributes the pixels LAI value. The 

VNP15A2 (PGE-534) executable is launched once every 8-day period, and is provided 

with the current 8-day set of VNP15A1 candidate daily tile products. It performs the 

following actions: 

• Upon initiation of the session (once per tile), the runtime inputs are retrieved 

from the process control file (.pcf) provided by the high level scheduler/loader 

environment. 

• The PGE allocates all in-memory data structures it requires; note this 

executable does not require the ancillary file, VNP15A2_ANC_V1.hdf. 

• The set of candidate daily VNP15A1 product (from 1 to 8) files are opened, 

and in-memory dictionaries are built of their contents. 

• A row-wise processing loop is established, and each subsequent row from each 

day’s input file is buffered into memory. 

• A pixel-wise processing loop is established, and for each pixel, the raw digital 

values are stored. 

• An inner-most, temporal loop is established, looping through the (1 to 8) days 

of candidate data. 

• From each set of 8 days pixels (e.g. using a vertical drill-down through the day 

dimension), the pixel with the highest FPAR value is identified. The base-0 

index for this day is stored and used to retrieve the spatially coincident FPAR, 

LAI estimates associated with this day. 

• The FPAR and LAI (and QC) values for the day identified above are then 

placed in the single 2D output buffer at the appropriate {line, sample} position. 

• When the current row is complete, it is written out to the open HDF-EOS 

archive product file. 

• When all rows are complete, final ECS metadata processing is performed, 

whereby the ECS metadata fields are set into their blocks, and finally written out 

to the product output file. 

• Final session cleanup tasks are then performed, where all dynamic memory is 

released, files are closed.	 	
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4. Product Accuracy/Uncertainty 

Accuracy is defined as the difference between the mean value of measurements 

and the corresponding true value. Uncertainty is defined as scatter (standard deviation) 

of measurements with respect to true value. The true values in these definitions refer 

to field measurements of LAI and FPAR. The accuracy and uncertainty of VIIRS 

LAI/FPAR products will be characterized via the following multiple approaches. 

	

4.1. Validation Approach 

Multiple validation techniques will be used to develop uncertainty information 

on SNPP VIIRS LAI/FPAR products. There has been an extensive effort since the 

inception of the NASA EOS program to validate biophysical products. Validation 

campaigns from existing network including the BigFoot, AERONET, FLUXNET, EOS 

Land Validation Core Sites and VALERI, with sustained efforts from several research 

teams across the globe that have provided the necessary platform to validate 

LAI/FPAR products (Morisette et al. 2006; Garrigues et al. 2008; Yan et al., 2016b). 

MODIS derived LAI/FPAR products, the predecessor of VIIRS, have been extensively 

validated over a suite of vegetation types and climatic regimes, and the product is 

categorized as a Stage 2 (Stage 1 for FPAR) land validated product under CEOS Land 

Product Validation (LPV) scheme. Thus VIIRS validation approach will adopt the 

EOS validation strategy that has been developed and refined over the past 17+ years. It 

is to be noted that ‘‘validation’’ of this strategy refers to both (a) direct and (b) 

indirect validation, where the former refers to comparing satellite derived measures 

with ground truth while the latter refers to an exercise intercomparing products from 

different sensor systems to test consistency. Both direct and indirect validation 

approaches provide a comprehensive knowledge about the accuracy of global 

LAI/FPAR products and level of uncertainties that may result due to input data and 

modeling errors.   
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Figure 4-1. Global distribution of DIRECT & BELMANIP2.1 (BEnchmark Land Multisite 
ANalysis and Intercomparison of Products) sites. The DIRECT is a collection of sites for which 
ground measurements are available and that have been collected (Garrigues et al., 2008) and 
processed according to the CEOS-LPV guidelines. The BELMANIP2.1 network of sites was 
designed to represent the global variability of vegetation types and climatological conditions (Barret 
et al., 2006). This network was mainly built using sites from existing experimental networks 
(FLUXNET, AERONET, VALERI, BigFoot, etc.) and complemented with additional sites from the 
GLC2000 land cover map. Global vegetation is stratified into eight canopy architectural types, or 
biomes. The eight biomes are (1) grasses and cereal crops, (2) shrubs, (3) broadleaf crops, (4) 
savannas, (5) evergreen broadleaf forests, (6) deciduous broadleaf forests, (7) evergreen needle leaf 
forests, (8) deciduous needle leaf forests. 
 

4.1.1. Direct Validation 

The “bottom-up” approach proposed by the CEOS LPV subgroup will be 

adopted in the direct validation practice (Fernandes et al., 2014; Yang et al., 2006). 

This strategy is designed to correlate the scale of in situ biophysical measurements 

(i.e., LAI and FPAR) to that of the remote sensing product using finer-resolution 

images to bridge their scale gaps (Tan et al., 2005). This method is based on a two-

stage sampling strategy that uses multiple elementary sampling units (ESUs) to 

capture the variability across the extent of a site and repeats measurements within each 

ESU to capture the variability within the pixels of high-resolution imagery. Then, a 

transfer function is established between ground and radiometric data sets to produce 

reference maps. This scheme has been widely used to evaluate the uncertainties in 

current LAI/FPAR products (e.g., MODIS LAI/FPAR) and it is suitable for product 

validation over homogeneous or heterogeneous areas. 
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Based on “bottom-up” approach, all available in situ LAI/FPAR measurements 

over the globe will be synthesized for VIIRS LAI/FPAR assessment. In particular, the 

ImagineS project, which is designed to support European Copernicus Global Land 

Service, has conducted a series of single date or multi-temporal field campaigns over 

23 sites around the world during the past 5-years (from 2013 to present) (http://fp7-

imagines.eu). The measurements of LAI and FPAR have been up-scaled based on the 

above-mentioned scaling strategy and locally aggregated biophysical retrievals can be 

used for product assessment. This ImagineS project provides indispensable in situ data 

sets, as the field campaigns have been conducted in an unbiased acquisition mode. 

Furthermore, our long-running collaborations with European and Asian partners (Baret 

et al., 2006; Garrigues et al., 2008), who have active validation projects, enables to 

enlarge the available in situ data pool. One of these – VALERI - currently has over 40 

active sites representing all the major vegetation classes from different continents. 

Field campaigns at several of these sites are likely during the next few years and those 

data will also be used to validate VIIRS LAI/FPAR products. Additional validation 

datasets are from a collection of sites (“DIRECT”) for which ground measurements 

have been collected during the early EOS era (mostly from 2000 to 2008) (Weiss et al., 

2014). There are currently 113 such datasets available (Figure 4-1), corresponding to 

different sites and various dates of measurements. As the data sets were collected 

previously, temporal mismatch between ground measurements and VIIRS retrievals 

may induce unexpected bias or spurious assessment. Nevertheless, these ground 

measurements are valuable for obtaining multiple observations covering different 

spatiotemporal representativeness. Note that strict statistical test to justify the 

assumption (i.e., no significant change between acquisition year of ground and VIIRS) 

should be prioritized and results will be carefully interpreted.  

 

To facilitate scaling efforts, an additional direct validation approach is planned. 

MALIBU (Multi AngLe Imaging Bidirectional Reflectance Distribution Function 

sUAS) is a new demonstration-instrument recently deployed on a prototype small 

Unmanned Aircraft System that is part of a series of pathfinder missions funded under 

NASA's Internal Research and Development (IRAD) Program 

(https://viirsland.gsfc.nasa.gov/Campaigns.html). Dual Tetracam cameras (with 

overlapping swaths) are mounted on the MALIBU platform across-track and their 

channels were specifically chosen to cover the relative spectral response of multiple 
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satellite land sensors including MISR, MODIS and SNPP/JPSS VIIRS. Multiple 

angular observations from MALIBU on various biome types will provide opportunities 

to explore the abilities of the RT model in LAI/FPAR algorithm and angular impact on 

retrieval or scaling.  

 

4.1.3. Indirect Validation 

VIIRS LAI/FPAR products will be compared with products from other moderate 

resolution sensors including MODIS, SPOT and AVHRR in order to identify their 

respective strengths and weaknesses, thus leading to improvements in the next 

generation (version) of products. These exercises also help to improve user confidence 

in the research-quality of VIIRS products. In particular, the consistency evaluation 

between VIIRS and MODIS retrievals is prioritized in our work in order to build a 

long time series that is independent of sensor data. The intercomparison will be 

performed at various scales – global, regional and local (validation sites). At the global 

and regional scales, typically, the products will be re-projected to a common 

projection, re-sampled to a coarse spatial (5-km) and temporal (monthly) resolution. 

Several temporal composites for each of the four seasons will be selected to assess 

temporal variations in the products. The following statistical characteristics of the data 

sets will be evaluated: histograms of LAI by vegetation type, differences between 

global maps and transects across a range of latitudes, and statistics on data quality. 

The site-level comparison will be performed with product time series at fine spatial 

and temporal resolutions. Sites from the BELMANIP2.1 (Benchmark Land Multisite 

Analysis and Intercomparison of Products) network (Baret et al., 2006), which 

includes existing experimental networks (FLUXNET, AERONET, VALERI, BigFoot, 

etc.), will be introduced (Figure 4-1). This network is beneficial for intercomparison 

framework as the site selection was performed for each band of latitude (10° width) by 

keeping the same proportion of biome types within the selected sites as within the 

whole latitude band. Thus the selected sites are homogeneous over a 10×10 km2 area, 

nearly flat terrain and with a minimum proportion of urban area and permanent water 

bodies. Representing the latest version, the BELMANIP2.1 currently contains 445 

sites and is used in this validation approach. We have previously performed similar 

inter-comparison exercises with EOS LAI/FPAR products (Yan et al., 2016b). The 

VIIRS products will be assessed in a similar manner. 
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4.2. Preliminary Assessment 

4.2.1. Direct Validation 

Figures 4-2A and 4-2B compare ground measured LAI and FPAR with those of 

VIIRS, respectively. As expected, VIIRS shows better agreement with true LAI than 

with effective LAI. VIIRS retrievals are found to systematically overestimate effective 

LAI measurements, especially at the high LAI range (Stenberg et al., 1996). Overall, 

most of the data are within ±1 LAI bias, indicating that the total uncertainty of this 

validation work is less than 1 LAI unit (RMSE = 0.67). For FPAR, the R2 and RMSE 

are 0.81 and 0.1, respectively. The results present a tendency for overestimation by 

VIIRS retrievals. This systematic overestimation of FPAR over sparsely vegetated 

areas has been reported as a main drawback of the current version of the algorithm 

(Camacho et al., 2013). However, the disagreement in this preliminary assessment may 

also be due to the fact that understories are usually not taken into account in ground 

measurements that underestimate the true FPAR (Majasalmi et al., 2015). Overall, 

most data are within ±0.2 bias with all uncertainties included. Note that, this 

uncertainty comes from both VIIRS products and other sources including uncertainties 

of reference maps and mismatch in spatial and temporal domains. It should also be 

noted that the distribution of measurements is problematic with an over representation 

of low values and non-woody vegetation. Adding more ground measurements, 

especially from forest biomes, may resolve this issue according to guidelines from 

CEOS/WGCV-LPV. 

 

4.2.2. Indirect Validation (Consistency Evaluation)  

While it is critical that LAI/FPAR products are generated with high accuracy and 

precision, more importantly they must be produced with consistent algorithms across 

different sensor platforms in order to maintain a continuous and well characterized 

data record. This is especially important for the VIIRS LAI/FPAR product on SNPP, 

which bridges the gap between NASA's EOS satellites and the next generation JPSS 

platforms. Thus, to evaluate the spatiotemporal consistency between VIIRS and 

MODIS LAI/FPAR products, one-year time series of VIIRS and MODIS (Aqua) 

LAI/FPAR over selected regions have been retrieved and their consistency is evaluated 

at two different scale-levels: regional and site scales. Global scale evaluation and more 

explicit analysis will follow this preliminary evaluation once VIIRS era global 

products are available. 
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(A) 

 
 

(B)	
Figure 4-2. Comparisons between ground measurements and VIIRS retrievals. (A) LAI and (B) 
FPAR. 24 true LAI, 28 effective LAI and 27 FPAR measurements are available for comparison 
purpose. The 3km×3km sites dominated by different biome types are depicted by different colors. 
Circles (triangles) in panel (A) represents ground LAI measurements corrected (not corrected) for 
clumping. Note that these comparisons use only temporally matched observations (only ImagineS)  
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 4-3. Temporal comparisons of LAI and FPAR of VIIRS V1 and Aqua MODIS C6 
(MYD15A2H) products over four validation sites. Monthly averaged LAI and FAPR values for the 
time period from 2012 to 2016 are shown here. Blue and red lines stand for MODIS C6 and VIIRS 
respectively. Upper panel shows missing data rate in each year and following two panels show 
seasonal variation of LAI/FPAR products with collected ground measurements. Panel (A), (B), (C) 
and (D) are for grasses/cereal crops (Biome1), shrubs (Biome2), deciduous broadleaf forest 
(Biome6) and deciduous needleleaf forest (Biome8) cases, respectively. Note that the ground 
measurement plotted in panel (C) is not valid when the entropy criterion is applied. This means that 
higher heterogeneity may result in about 1 LAI unit difference.	
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Site-Scale 

Multiple validation sites and BELMANIP2 network are used to evaluate site-

scale VIIRS-MODIS consistency. Figure 4-3 shows the seasonal trajectory of VIIRS 

and MODIS LAI/FPAR products over four sites for the period from 2012–2016. All 

available ground measurements are plotted in these figures as a reference. Statistics of 

these temporal comparisons are given in Table 4-1. Note that the result reported in 

Table 4-1 is limited by only 2015 data. Both products shown in Figure 4-3 achieve a 

good temporal continuity across all biomes and comparable spatial coverage (i.e., 

missing data rate). Each site shows distinct characteristics of seasonal variations. For 

example, non-forest biomes exhibit smaller seasonal amplitude changes, less than 2 

LAI (0.4 FPAR), while forest biomes reveal a stronger LAI (4 LAI) and FPAR (0.5 

FPAR) seasonality during the annual cycle. Interestingly, the algorithms implemented 

for both sensors capture the ground measurements well and also enable differentiation 

of possible negative impacts due to snow or cloud contamination. Over the 445 

BELMANIP2.1 sites, the statistical result from temporal evaluation at site-scale 

indicates good consistency between VIIRS and MODIS in both LAI/FPAR retrievals. 

Most biomes, except biomes 5 and 7, exhibit high values of R2 (greater than 0.9) but 

the dense evergreen broadleaf forests (B5) show less agreement in both LAI/FPAR. 

This is not surprising because of sub-optimal quality of retrievals due to reflectance 

saturation.  

 

Table 4-1. Site-scale comparison between VIIRS and MODIS LAI/FPAR retrievals for the period of 
2012–2016. Multiple validation sites and BELMANIP2 network are introduced for this comparison. 
Linear least square regression	

  LAI  FPAR 
Biome a b R2 Bias RMSE a b R2 Bias RMSE 

1 0.927 0.046 0.96 -0.009 0.16 0.953 0.015 0.98 0.000 0.03 
2 0.942 0.029 0.97 0.006 0.07 0.966 0.011 0.97 0.003 0.02 
3 0.845 0.130 0.96 -0.045 0.25 0.918 0.034 0.97 -0.002 0.04 
4 0.909 0.139 0.91 0.015 0.27 0.923 0.036 0.94 0.001 0.04 
5 0.779 1.206 0.59 -0.076 0.63 0.707 0.254 0.47 -0.004 0.04 
6 0.965 0.098 0.93 0.008 0.53 0.913 0.059 0.92 0.004 0.07 
7 0.910 0.194 0.73 0.010 0.56 0.862 0.088 0.75 -0.004 0.07 
8 0.968 0.064 0.94 -0.011 0.40 0.963 0.022 0.95 -0.002 0.05 

Biome1: Grasses/Cereal crops, Biome2: Shrubs, Biome3: Broadleaf crops, Biome4: Savanna, 
Biome5: Evergreen Broadleaf forest, Biome6: Deciduous Broadleaf forest, Biome7: Evergreen 
Needleleaf forest, Biome8: Deciduous Needleleaf forest. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

	 	
Figure 4-4. Spatial distribution of retrieved VIIRS, MODIS and Landsat LAIs at over Barrax (A) in 
Spain and Pshenichne site (B) in Ukraine. The Landsat LAI retrievals for Barrax and Pshenichne are 
acquired in 05/27/2015 and 06/12/2014, and then firstly derived raw spatial resolution (30m) then 
aggregated to 500m-resolution for comparison purpose. Well-characterized transfer functions between 
ground truth and Landsat spectral information are used to build Landsat LAI reference maps.  
Corresponding histograms for LAIs for two sites are given in (C) and (D), respectively.	
 

Figure 4-4 presents the spatial distribution of VIIRS, MODIS and Landsat LAI 

retrievals at 500m resolution over two select validation sites (Barrax in Spain and 

Pshenichne in Ukraine). Dominant biomes are cropland and deciduous broadleaf forest, 

respectively. Overall, VIIRS closely resembles the spatial distribution and histogram 

of MODIS LAI over both sites. The degree of similarity between moderate- (i.e., 

VIIRS and MODIS) and finer- resolution retrievals is lower in the heterogeneous 

cropland site and higher in the more homogeneous dense forest. This discrepancy is 

likely explained by intensified scale effect with increasing heterogeneity. Tian et al. 
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(2002) demonstrated that LAI retrieval errors at coarse resolution are inversely related 

to the proportion of the dominant land cover in such pixels. Similar patterns are also 

observed in the case of FPAR (not shown here). 

 

Regional-Scale 

Two separate investigations are performed in the regional scale evaluation of 

consistency: (a) continental- and (b) tile- scale. An 8-day LAI composite (between 4 

and 11 July 2015) over the African continent and 1-year long retrievals over selected 

tiles (8 tiles for 8 biomes) are used. The spatial distributions of LAI from both sensors 

over the African continent during an 8-day composite period are compared in Figure 4-

5A. There is no visually distinguishable difference between the two datasets. VIIRS 

and MODIS LAI exhibit similar and continuous spatial patterns over the whole 

continent. As expected, the LAI patterns closely coincide with the spatial distribution 

of the vegetation type—high LAI over forests and low LAI over herbaceous vegetation. 

The tropical evergreen forests in the Congo basin have high LAI values (up to 7); 

regions somewhat covered by grasses and shrubs generally have low LAIs. From the 

absolute LAI difference map (Figure 4-5C), VIIRS is found to spatially agree with 

MODIS well, with absolute differences within ±0.5 LAI unit for most of the land 

surface (Figure 4-5D). However, obvious differences over densely vegetated regions 

(Congo rainforests) can be observed. These discrepancies between VIIRS and MODIS 

can exceed 1 LAI unit. The differences are stochastic and do not reflect a systematic 

bias. This is clearly explained by a mismatch in algorithm path for LAI retrieval 

(Figure 4-5B). The RT-based main algorithm without saturation condition delivers the 

best quality of retrieval. And sub-optimal and less accurate retrievals are generated via 

the main algorithm under reflectance saturation and the empirical back-up algorithm, 

respectively. Thus, careful interpretation of the retrievals over densely vegetated 

regions by consulting the QA is recommended.   

 

The scatter plots in Figure 4-6 show the comparison between VIIRS and MODIS 

LAI/FPAR over the entire year of 2015. The color-coded 46 circles in each plot 

represent the averaged LAI/FPAR values of biome-specific pixels during the 

corresponding 8-day composites. As expected by the RT theory, LAI and FPAR show 

good consistency in temporal variation. Note that the LAI/FPAR differences between 

two neighboring 8-day composites vary, which means that the rate of LAI or FPAR 
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change varies. VIIRS LAI and FPAR agree with MODIS products very well, with R2 

values larger than 0.99 across biomes without any obvious systematic bias.  

 

 
(A)  

(B) 

 
(C) 

 
(D) 

Figure 4-5. (A) Retrieved and VIIRS V1 and Aqua MODIS LAI over Africa region with their own 
LUT configuration. Overall spatial distribution of VIIRS LAI is closely resembled with MODIS 
LAI. (B) Algorithm retrieval rate (%) of VIIRS and Aqua MODIS. Legends: Main – Main algorithm 
was executed; Main-S - Main algorithm was executed. Saturation; BackUp-G -View/sun zenith 
angle too low. Backup retrievals; BackUp-O - Main algorithm fails. Backup retrievals; Not 
Retrieved - not executed because BRF is not available. (C) Spatial distribution of LAI difference 
between VIIRS and MODIS. (D) Histogram of the difference. 
 

The algorithm path is also critical to the consistency between two products as it 

impacts LAI/FPAR accuracy. It varies by vegetation density, sun-sensor geometry and 

atmospheric conditions. Thus, algorithm path will exhibit seasonality as well. Panels 

in third row of Figure 4-6 show the annual variation of algorithm retrieval rate through 

the year 2015 over four select tiles. A clear seasonality can be seen and the RI (i.e., the 

rate of main algorithm retrial with- and without-saturation condition) in winter season 

is much lower than that in other seasons. This is due to poor geometry and ice/snow 
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coverage in winter. Non-forest biomes (i.e., Biome 1 and 3) situated in medium to low 

latitudes have very high main algorithm retrieval rate (>90%) during the growing 

season. This ensures a higher accuracy of LAI/FPAR retrievals and is meaningful for 

the use of these products in crop yield estimation (Doraiswamy et al., 2004). We note 

a large proportion of main algorithm saturation from May to October over deciduous 

forests (third row of Figure 4-6C), which reduces the accuracy of the products. Higher 

backup algorithm rates in winter are found in biomes located in high latitudes where 

larger solar zenith angle limits main algorithm retrieval. The results in general depict 

good consistency in algorithm path between VIIRS and MODIS year round and in all 

biomes. This imbues confidence in the VIIRS-MODIS LAI/FPAR products. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 4-6. Comparison between VIIRS and Aqua MODIS LAI/FPAR over entire one-year period (2015). Each circle represents averaged LAI/FPAR values 
of target biome pixels in each biome dominant tile (Biome 1, 3, 6 and 7) and its color stands for sequential DOY order. (A), (B), (C) and (D) columns 
represent Biome 1, 3, 6 and 7, respectively. First, second and third row shows respective LAI, FPAR and algorithm retrieval rate (%, left bar for MODIS and 
right bar for VIIRS). Consecutive 46 pairs of bar graph demonstrate seasonal variation of algorithm retrieval rate over entire one-year period. 
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5. Data Formats 

5.1. Formats 

SNPP VIIRS LAI/FPAR data are provided in the standard land HDF5-EOS 

(Hierarchical Data Format 5 - Earth Observing System) format, which is beneficial to 

efficiently manage multidimensional arrays of NASA science records and structures 

for grouping objects. VIIRS product filenames (i.e., the local granule ID) follow a 

naming convention that gives useful information regarding the product. For example, 

the filename VNP15A2.A2015345.h28v05.001.2016292234657.h5 indicates:  

o VNP15A2 – Product Short Name  

o .A2015345 – Julian Date of Acquisition (A−YYYYDDD)  

o .h28v05 – Tile Identifier (horizontal XX, vertical YY) 

o .001 – Product Version  

o .2016292234657 – Julian Date of Production (YYYYDDDHHMMSS) 

o .h5 – Data Format (HDF5−EOS) 

The product is composed of six different Scientific Data Set (SDS) layers. Details are 

given in Table 5-1. 

	

Table 5-1. Scientific Data Sets included in the VIIRS LAI/FPAR product 
Scientific Data Sets 
(HDF Layers) (6) Units Bit Type Fill 

Value 
Valid 
Range 

Multiply By 
Scale Factor 

Fpar Dimensionless 
(Fraction) 

8−bit 
unsigned 
integer 

249−255 0−100 0.01 

Lai 
Dimensionless 
(m2 plant/m2 

ground) 

8−bit 
unsigned 
integer 

249−255 0−100 0.1 

FparLai_QC Class flag 
8−bit 

unsigned 
integer 

255 0−254 N/A 

FparExtra_QC Class flag 
8−bit 

unsigned 
integer 

255 0−254 N/A 

FparStdDev Dimensionless 
(Fraction) 

8−bit 
unsigned 
integer 

248−255 0−100 0.01 

LaiStdDev 
Dimensionless 
(m2 plant/m2 

ground) 

8−bit 
unsigned 
integer 

248−255 0−100 0.1 

	

5.2. QC Metadata 

Pixel-wise QC information of tiled VIIRS LAI/FPAR product is represented by 
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two SDS layers (FparLai_QC and FparExtra_QC) (See Table 5-1). Note that the 

LAI/FPAR algorithm is executed irrespective of input quality. Therefore user should 

consult the QC layers of the LAI/FPAR product to select reliable retrievals. The key 

indicator of retrieval quality of the LAI/FPAR product is SCF_QC bit field in 

FparLAI_QC SDS layer that represents algorithm path. Details of quality flags of the 

product are shown in following tables (Table 5-2 and 5-3) 

 

Table 5-2. Values of FparLAI_QC (8-bit) 
Bit 
No. Parameter Name Bit Comb. FparLAI_QC 

0-2 SCF_QC 
(five−level confidence score) 

000 0 Main (RT) method used, best result possible (no 
saturation) 

001 1 Main (RT) method used with saturation. Good, very 
usable 

010 2 Main (RT) method failed due to bad geometry, 
empirical algorithm used 

011 3 Main (RT) method failed due to problems other than 
geometry, empirical algorithm used 

  100 
4 Pixel not produced at all, value couldn't be retrieved 
(possible reasons: bad L1B data, unusable VNP09GA 
data, water pixel) 

3 DeadDetector 0 Both red and NIR detectors are fine  
1 At least one band has dead detector 

4-7 BiomeType 

0000 
0001 

0 Water 
1 Grasses/cereal crops 

0010 2 Shrubs 
0011 3 Broadleaf crops 
0100 4 Savanna 
0101 5 Evergreen broadleaf forest 
0110 6 Deciduous broadleaf forest 
0111 7 Evergreen needleleaf forest 
1000 8 Deciduous needleleaf forest 
1001 9 Non-vegetated 
1010 10 Urban 
1011 11 Unclassified 
1100 12 Filled Value 
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Table 5-3. Values of FparExtra_QC 
Bit No. Parameter Name Bit Comb. FparExtra_QC 

0-1 Cloud detection and confidence 

00 0 Confident clear 
01 1 Probably clear 
10 2 Probably cloudy 
11 3 Confident cloudy 

2 Cloud shadow 0 0 No cloud shadow 
1 1 Shadow 

3 Thin cirrus 0 0 No 
1 1 Yes 

4-5 Aerosol quantity 

00 0 Climatology 
01 1 Low 
10 2 Average 
11 3 High 

6 Snow/Ice 0 0 No 
1 1 Yes 

 

And fill value legends for SDS layers are given in Table 5-4 and 5-5. 

 

Table 5-4. LAI and FPAR Fill value Legends 
Value Description 

255 Fillvalue, assigned when: the VNP09GA surface reflectance for channel VIS, NIR was 
assigned as Fillvalue, or land cover pixel itself was assigned Fillvalue 255 or 254 

254 land cover assigned as perennial salt or inland fresh water 
253 land cover assigned as barren, sparse vegetation (rock, tundra, desert) 
252 land cover assigned as perennial snow, ice 
251 land cover assigned as “permanent” wetlands/inundated marshlands 
250 land cover assigned as urban/built−up 
249 land cover assigned as “unclassified” or not able to determine 

	

Table 5-5. STD LAI and STD FPAR Fill Value Legends 
Value Description 

255 Fillvalue, assigned when: the VNP09GA surface reflectance for channel VIS, NIR was 
assigned its Fillvalue, or land cover pixel itself was assigned Fillvalue 255 or 254 

254 land cover assigned as perennial salt or inland fresh water 
253 land cover assigned as barren, sparse vegetation (rock, tundra, desert) 
252 land cover assigned as perennial snow, ice 
251 land cover assigned as “permanent” wetlands/inundated marshlands 
250 land cover assigned as urban/built−up 
249 land cover assigned as “unclassified” or not able to determine 
248 No standard deviation available, pixel produced using backup method 

 
 
5.3. Spatial Projection 

The VNP15 algorithms, like most VIIRS Land processes, are organized to accept 

global coverage inputs, and produce global coverage either daily (PGE-533) or on an 

8-day (PGE-534) time step. Rather than process synoptic 500 m spatial resolution 

images, the VIIRS Land team has adopted a contiguous land tile scheme, based on the 
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Sinusoidal Grid - a map projection derived from the sinusoidal map projection. This 

projection defines a total of 648 tiles globally, at 10 degree resolution (https://modis-

land.gsfc.nasa.gov/MODLAND_grid.html). The figure below graphically depicts the 

sinusoidal tile grid (assuming standard 10 degrees processing tiles) that we expect to 

work with at-launch (Figure 5-1). Each individual tile in this grid includes 

approximately 2400 x 2400 500 m pixels: 

	

 
Figure 5-1. The Suomi-NPP VIIRS sinusoidal grid consists of 460 non-overlapping tiles which 
measure approximately 10° x 10° region. This sinusoidal grid projection and tiling scheme are 
exactly consistent with MODIS land products. 
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